Reference: Monschau N, et al. (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64(11):4283-90

Reference Help

Abstract

Riboflavin production in the filamentous fungus Ashbya gossypii is limited by glycine, an early precursor required for purine synthesis. We report an improvement of riboflavin production in this fungus by overexpression of the glycine biosynthetic enzyme threonine aldolase. The GLY1 gene encoding the threonine aldolase of A. gossypii was isolated by heterologous complementation of the glycine-auxotrophic Saccharomyces cerevisiae strain YM13 with a genomic library from A. gossypii. The deduced amino acid sequence of GLY1 showed 88% similarity to threonine aldolase from S. cerevisiae. In the presence of the GLY1 gene, 25 mU of threonine aldolase specific activity mg-1 was detectable in crude extracts of S. cerevisiae YM13. Disruption of GLY1 led to a complete loss of threonine aldolase activity in A. gossypii crude extracts, but growth of and riboflavin production by the knockout mutant were not affected. This indicated a minor role of the enzyme in glycine biosynthesis of A. gossypii. However, overexpression of GLY1 under the control of the constitutive TEF promoter and terminator led to a 10-fold increase of threonine aldolase specific activity in crude extracts along with a 9-fold increase of riboflavin production when the medium was supplemented with threonine. This strong enhancement, which could not be achieved by supplementation with glycine alone, was attributed to an almost quantitative uptake of threonine and its intracellular conversion into glycine. This became evident by a subsequent partial efflux of the glycine formed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Monschau N, Sahm H, Stahmann K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference