Reference: Yu W, et al. (1996) Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2464-72

Reference Help

Abstract


In Saccharomyces cerevisiae, at least 12 genes are important for cells to propagate in medium containing elevated concentrations of copper salts (J. Welch, S. Fogel, C. Buchman, and M. Karin, EMBO J. 8:255-260, 1989). Complementation studies were carried out on a copper-sensitive mutation (cup14) from this group. A new yeast gene, designated SLF1, was identified as a multicopy suppressor of the cup14 mutation. Slf1 is important for the physiological process of copper sulfide (CuS) mineralization on the surface of cells cultured in medium containing copper salts. CuS mineralization causes the cells to turn brown. Disruption of SLF1, which is located close to the telomere region of chromosome IV, leads to limited copper sensitivity, and the resulting cells lack the normal brownish coloration when grown in CuSO4-containing medium. Overproduction of Slf1 in wild-type cells confers superresistance to CuSO4 and enhances the coloration of cells cultured in the presence of CuSO4. Upon addition of KCN to Cu-grown cells, the brownish coloration was bleached instantly, and copper ions were solubilized. These data are consistent with Slf1-dependent accumulation of CuS complexes on the cell surface. Disruption of SFL1 also results in loss of the ability of yeast cells to deplete Cu but not Cd ions from the growth medium, whereas overexpression enhances Ca depletion ability and the resulting deposition of CuS particles. It is proposed that Slfl participates in a copper homeostasis pathway, distinct from the Cup1 detoxification system, that leads to sulfide generation and CuS biomineralization on the cell surface. This process may coordinate with the Cup1 pathway at different copper concentrations to prevent copper-induced toxicity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Yu W, Farrell RA, Stillman DJ, Winge DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference