Take our Survey

Reference: Engelberg D, et al. (1990) In vitro reconstitution of cdc25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J 9(3):641-51

Reference Help

Abstract

The attenuated GTP regulation adenylyl cyclase (CDC35) lysates or membranes prepared from cells of a cdc25ts strain is enhanced 2.5- to 6-fold by mixing these lysates or membranes with lysates or membranes from a cdc35ts strain harboring wild-type CDC25. The kinetics of activation of the Saccharomyces cerevisiae adenylyl cyclase in vitro is first order, as is the activation of mammalian adenylyl cyclase. The rate of enzyme activation in the presence of non-hydrolysable analogs of GTP increases with the number of CDC25 gene copies present in the cell. When GppNHp was used the rate of activation of the cyclase in a strain harboring a multicopy plasmid of CDC25 was 7.0-fold higher than the rate in an isogenic strain with the cdc25-2 mutation. The rate of adenylyl cyclase activation from a strain with a disrupted CDC25 gene is 14.7-fold lower than the rate in an isogenic strain containing the CDC25 gene on a multicopy plasmid. The reconstitution experiments described provide direct biochemical evidence for the role of the CDC25 protein in regulating the RAS dependent adenylyl cyclase in S.cerevisiae. The reconstitution experiments and the kinetic experiments may also provide a biochemical assay for the CDC25 protein and can form the basis for its characterization. In this study we also show that adenylyl cyclase activity in ras1ras2byc1 cells is found in the soluble fraction, whereas in wild-type strain it is found in the membrane fraction. Overexpression of the gene CDC25 in the ras1ras2bcy1 strain relocalizes adenylyl cyclase activity to the membrane fraction. This finding suggests a biochemical link between CDC25 and CDC35 in the absence of RAS, in addition to its role in regulating RAS dependent adenylyl cyclase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Engelberg D, Simchen G, Levitzki A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference