Take our Survey

Reference: Kane PM, et al. (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase. J Biol Chem 267(1):447-54

Reference Help

Abstract


Previous purification and characterization of the yeast vacuolar proton-translocating ATPase (H(+)-ATPase) have indicated that it is a multisubunit complex consisting of both integral and peripheral membrane subunits (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095; Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We have obtained monoclonal antibodies recognizing the 42- and 100-kDa polypeptides that were co-purified with vacuolar ATPase activity. Using these antibodies we provide further evidence that the 42-kDa polypeptide, a peripheral membrane protein, and the 100-kDa polypeptide, an integral membrane protein, are genuine subunits of the yeast vacuolar H(+)-ATPase. The synthesis, assembly, and targeting of three of the peripheral subunits (the 69-, 60-, and 42-kDa subunits) and two of the integral membrane subunits (the 100- and 17-kDa subunits) were examined in mutant yeast cells containing chromosomal deletions in the TFP1, VAT2, or VMA3 genes, which encode the 69-, 60-, and 17-kDa subunits, respectively. The steady-state levels of the various subunits in whole cell lysates and purified vacuolar membranes were assessed by Western blotting, and the intracellular localization of the 60- and 100-kDa subunits was also examined by immunofluorescence microscopy. The results suggest that the assembly and/or the vacuolar targeting of the peripheral subunits of the yeast vacuolar H(+)-ATPase depend on the presence of all three of the 69-, 60-, and 17-kDa subunits. The 100-kDa subunit can be transported to the vacuole independently of the peripheral membrane subunits as long as the 17-kDa subunit is present; but in the absence of the 17-kDa subunit, the 100-kDa subunit appears to be both unstable and incompetent for transport to the vacuole.

Reference Type
Journal Article
Authors
Kane PM, Kuehn MC, Howald-Stevenson I, Stevens TH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference