Reference: Schwienhorst I, et al. (2000) SUMO conjugation and deconjugation. Mol Gen Genet 263(5):771-86

Reference Help

Abstract


Ligation of the ubiquitin-like protein SUMO (Smt3p) to other proteins is essential for viability of the yeast Saccharomyces cerevisiae. Like ubiquitin (Ub), SUMO undergoes ATP-dependent activation by a specific activating enzyme. SUMO-activating enzyme is a heterodimer composed of Uba2p and Aos1p, polypeptides with sequence similarities, respectively, to the C- and N-terminal parts of Ub-activating enzyme. To study the function of SUMO conjugation, we isolated uba2 mutants that were temperature-sensitive for growth. In these mutants conjugation of SUMO to other proteins was drastically reduced, even at the temperature permissive for growth. In a screen for spontaneous suppressors of the temperature-sensitive growth phenotype of the mutant uha2-ts9, we isolated a strain with a null mutation (sut9) in a gene of hitherto unknown function (SUT9/YIL031W/SMT4). This gene encodes a protein with similarities to Ulp1p, a dual-function protease that processes the SUMO precursor and deconjugates SUMO from its substrates. The novel protein was therefore termed Ulp2p. Inactivation of ULP2 in a strain expressing wild-type SUMO-activating enzyme resulted in slow and temperature-sensitive growth, and accumulation of SUMO conjugates. Thus, mutations in SUMO-activating enzyme and mutations in Ulp2p suppress each other, indicating that SUMO conjugation and deconjugation must be in balance for cells to grow normally. Other phenotypes of ulp2 mutants include a defect in cell cycle progression, hypersensitivity to DNA damage, and chromosome mis-segregation. Ulp2p is predominantly located within the nucleus, whereas Ulp1p colocalizes with nuclear pore complex proteins, indicating that the apparently distinct functions of the two SUMO deconjugating enzymes are spatially separated.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Schwienhorst I, Johnson ES, Dohmen RJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference