Reference: McA'Nulty MM and Lippard SJ (1996) The HMG-domain protein Ixr1 blocks excision repair of cisplatin-DNA adducts in yeast. Mutat Res 362(1):75-86

Reference Help

Abstract


Ixr1 is a yeast HMG-domain protein which binds the major DNA adducts of the antitumor drug cisplatin. Previous work demonstrated that Saccharomyces cerevisiae cells lacking the IXR1 gene were two-fold less sensitive to cisplatin treatment than wild-type cells, and the present investigation reveals a six-fold difference in yeast having a different background. The possibility that the lower cytotoxicity of cisplatin in the ixr1 strain is the result of enhanced repair was investigated in rad1, rad2, rad4, rad6, rad9, rad10, rad14 and rad52 backgrounds. In three of the excision repair mutants, rad2, rad4 and rad14, the differential sensitivity caused by removing the Ixr1 protein was nearly abolished. This result demonstrates that the greater cisplatin resistance in the ixr1 strain is most likely a consequence of excision repair, supporting the theory that Ixr1 and other HMG-domain proteins can block repair of the major cisplatin-DNA adducts in vivo. The differential sensitivity of wild-type cells and those lacking Ixr1 persisted in the rad1 and rad10 strains, however, indicating that these two proteins act at a stage in the excision repair pathway where damage recognition is less critical. A model is proposed to account for these results, which is strongly supported recently identified functional roles for the rad excision repair gene products. A rad52 mutant was more sensitive to cisplatin than the RAD52 parental strain, which reveals that Rad52, a double-strand break repair protein, repairs cisplatin-DNA adducts, probably interstrand cross-links. A rad52 ixr1 strain was less sensitive to cisplatin than the rad52 IXR1 strain, consistent with Ixr1 not blocking repair of cisplatin adducts removed by Rad52 rad6 strains behaved similarly, except they were both substantially more sensitive to cisplatin. Interruption of the RAD9 gene, which is involved in DNA-damage-induced cell cycle arrest, had no affect on cisplatin cytotoxicity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
McA'Nulty MM, Lippard SJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference