Reference: Silveira MC, et al. (2000) Nitrogen regulation of Saccharomyces cerevisiae invertase. Role of the URE2 gene. Appl Biochem Biotechnol 84-86:247-54

Reference Help

Abstract


The regulation of extracellular enzymes is of great biotechnological interest. We studied the regulatory role of the URE2 gene on the periplasmic invertase of Saccharomyces cerevisiae, because its periplasmic asparaginase is regulated by the URE2/GLN3 system. Enzymatic activity was measured in the isogenic strains P40-1B, the ure2 mutant P40-3C, and the P40-3C strain transformed with the pIC-CS plasmid carrying the URE2 gene. The assays were performed using midlog and stationary phase cells and nitrogen-starved cells from these growth phases. During exponential growth, the level of invertase in both wild-type and ure2 mutant cells was comparable. However, the invertase activity in ure2 mutant cells from stationary phase was sixfold lower than in the wild-type cells. When P40-3C cells were transformed with the pIC-CS plasmid, the wild-type phenotype was restored. On nitrogen starvation in the presence of sucrose, the invertase activity in wild-type cells from midlog phase decreased three times, whereas in stationary cells, the activity decreased eight times. However, invertase activity doubled in ure2 mutant cells from both phases. When these cells were transformed with the aforementioned plasmid, the wild-type phenotype was restored, although a significant invertase decrease in stationary cell was not observed. These results suggested that the URE2 protein plays a role in invertase activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Silveira MC, Oliveira EM, Carvajal E, Bon EP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference