Reference: Eberhardt I, et al. (1999) Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. Eur J Biochem 262(1):191-201

Reference Help

Abstract


In the yeast, Saccharomyces cerevisiae, pyruvate decarboxylase (Pdc) is encoded by the two isogenes PDC1 and PDC5. Deletion of the more strongly expressed PDC1 gene stimulates the promoter activity of both PDC1 and PDC5, a phenomenon called Pdc autoregulation. Hence, pdc1Delta strains have high Pdc specific activity and can grow on glucose medium. In this work we have characterized the mutant alleles pdc1-8 and pdc1-14, which cause strongly diminished Pdc activity and an inability to grow on glucose. Both mutant alleles are expressed as detectable proteins, each of which differs from the wild-type by a single amino acid. The cloned pdc1-8 and pdc1-14 alleles, as well as the in-vitro-generated pdc1-51 (Glu51Ala) allele, repressed expression of PDC5 and diminished Pdc specific activity. Thus, the repressive effect of Pdc1p on PDC5 expression seems to be independent of its catalytic activity. A pdc1-8 mutant was used to isolate spontaneous suppressor mutations, which allowed expression of PDC5. All three mutants characterized had additional mutations within the pdc1-8 allele. Two of these mutations resulted in a premature translational stop conferring phenotypes virtually indistinguishable from those of a pdc1Delta mutation. The third mutation, pdc1-803, led to a deletion of two amino acids adjacent to the pdc1-8 mutation. The alleles pdc1-8 and pdc1-803 were expressed in Escherichia coli and purified to homogeneity. In the crude extract, both proteins had 10% residual activity, which was lost during purification, probably due to dissociation of the cofactor thiamin diphosphate (ThDP). The defect in pdc1-8 (Asp291Asn) and the two amino acids deleted in pdc1-803 (Ser296 and Phe297) are located within a flexible loop in the beta domain. This domain appears to determine the relative orientation of the alpha and gamma domains, which bind ThDP. Alterations in this loop may also affect the conformational change upon substrate binding. The mutation in pdc1-14 (Ser455Phe) is located within the ThDP fold and is likely to affect binding and/or orientation of the cofactor in the protein. We suggest that autoregulation is triggered by a certain conformation of Pdc1p and that the mutations in pdc1-8 and pdc1-14 may lock Pdc1p in vivo in a conformational state which leads to repression of PDC5.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Eberhardt I, Cederberg H, Li H, König S, Jordan F, Hohmann S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference