Reference: Coates PJ, et al. (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7(8):607-10

Reference Help

Abstract


Cellular senescence is determined by multiple factors, including the genetic regulation of metabolism and responses to endogenous and exogenous stresses [1-4]. Recent studies implicate a limited number of gene products in elongating lifespan in yeast and Caenorhabditis elegans [2-4]; these include the C, elegans gene cik-1, a central regulator of metabolism [5], and yeast RAS2, which controls the response to ultraviolet irradiation and other stresses [3]. Another gene postulated to effect senescence is PHB1, the yeast homologue of prohibitin [3], a rodent gene initially identified as a potential regulator of growth arrest and tumour suppressor [6-8]. Highly conserved prohibitin homologues have been identified in mammals [9], Drosophila [10], C. elegans [9], plants [11] and yeast. A second mammalian gene, encoding BAP37, a protein with sequence similarity to prohibitin, is thought to be involved in lymphocyte function [9]. Here, we show that the nuclear-encoded mammalian prohibitin and BAP37 proteins are present in mitochondria, are co-expressed, and interact physically with each other. Deletion of the Saccharomyces cerevisiae homologues, PHB1 and PHB2, results in a decreased replicative lifespan and a defect in mitochondrial membrane potential. Our observations highlight the relationship between the metabolic efficiency of cells and the ageing process, and provide evidence for its evolutionary conservation.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference