Take our Survey

Reference: Zubenko GS and Jones EW (1981) Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics 97(1):45-64

Reference Help

Abstract

During the process of sporulation, a/alpha diploids degrade about 50% of their vegetative proteins. This degradation is not sporulation specific, for asporogenous diploids of a/a mating type degrade their vegetative proteins in a fashion similar to that of their a/alpha counterparts. Diploids lacking carboxypeptidase Y activity, prc1/prc1, show about 80% of wild-type levels of protein degradation, but are unimpaired in the production of normal asci. Diploids lacking proteinase B activity, prb1/prb1, show about 50% of wild-type levels of protein degradation. The effect on degradation of the proteinase B deficiency is epistatic to the degradation deficit attributable to the carboxypeptidase Y deficiency. The prb1 homozygotes undergo meiosis and produce spores, but the asci and, possibly, the spores are abnormal. Diploids homozygous for the pleiotropic pep4-3 mutation show only 30% of the wild-type levels of degradation when exposed to a sporulation regimen, and do not undergo meiosis or sporulation. Neither proteinase B nor carboxypeptidase Y is necessary for germination of spores. Approximately half of the colonies arising from a/a or alpha/alpha diploids exposed to the sporulation regimen that express an initially heterozygous drug-resistance marker (can1) appear to arise from mating-type switches followed by meiosis and sporulation.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Zubenko GS, Jones EW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference