Reference: Kanazawa S, et al. (1988) ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8(2):664-73

Reference Help

Abstract


In Saccharomyces cerevisiae, 3-amino-1,2,4-triazole (aminotriazole) competitively inhibits the activity of imidazoleglycerolphosphate dehydratase, the product of the HIS3 gene. Wild-type strains are able to grow in the presence of 10 mM aminotriazole because they induce the level of imidazoleglycerolphosphate dehydratase. However, strains containing gcn4 mutations are unable to grow in medium containing aminotriazole because they lack the GCN4 transcriptional activator protein necessary for the coordinate induction of HIS3 and other amino acid biosynthetic genes. Here, we isolated a new gene, designated ATR1, which when present in multiple copies per cell allowed gcn4 mutant strains to grow in the presence of aminotriazole. In wild-type strains, multiple copies of ATR1 permitted growth at extremely high concentrations of aminotriazole (80 mM), whereas a chromosomal deletion of ATR1 caused growth inhibition at very low concentrations (5 mM). When radioactive aminotriazole was added exogenously, cells with multiple copies of ATR1 accumulated less aminotriazole than wild-type cells, whereas cells with the atr1 deletion mutation retained more aminotriazole. Unlike the mammalian mdr or yeast PDR genes that confer resistance to many drugs, ATR1 appears to confer resistance only to aminotriazole. Genetic analysis, mRNA mapping, and DNA sequencing revealed that (i) the primary translation product of ATR1 contains 547 amino acids, (ii) ATR1 transcription is induced by aminotriazole, and (iii) the ATR1 promoter region contains a binding site for the GCN4 activator protein. The deduced amino acid sequence suggests that ATR1 protein is very hydrophobic with many membrane-spanning regions, has several potential glycosylation sites, and may contain an ATP-binding site. We suggest that ATR1 encodes a membrane-associated component of the machinery responsible for pumping aminotriazole (and possibly other toxic compounds) out of the cell.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Kanazawa S, Driscoll M, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference