Take our Survey

Reference: Hirschhorn JN, et al. (1995) A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol 15(4):1999-2009

Reference Help

Abstract

Nucleosomes have been shown to repress transcription both in vitro and in vivo. However, the mechanisms by which this repression is overcome are only beginning to be understood. Recent evidence suggests that in the yeast Saccharomyces cerevisiae, many transcriptional activators require the SNF/SWI complex to overcome chromatin-mediated repression. We have identified a new class of mutations in the histone H2A-encoding gene HTA1 that causes transcriptional defects at the SNF/SWI-dependent gene SUC2. Some of the mutations are semidominant, and most of the predicted amino acid changes are in or near the N- and C-terminal regions of histone H2A. A deletion that removes the N-terminal tail of histone H2A also caused a decrease in SUC2 transcription. Strains carrying these histone mutations also exhibited defects in activation by LexA-GAL4, a SNF/SWI-dependent activator. However, these H2A mutants are phenotypically distinct from snf/swi mutants. First, not all SNF/SWI-dependent genes showed transcriptional defects in these histone mutants. Second, a suppressor of snf/swi mutations, spt6, did not suppress these histone mutations. Finally, unlike in snf/swi mutants, chromatin structure at the SUC2 promoter in these H2A mutants was in an active conformation. Thus, these H2A mutations seem to interfere with a transcription activation function downstream or independent of the SNF/SWI activity. Therefore, they may identify an additional step that is required to overcome repression by chromatin.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Hirschhorn JN, Bortvin AL, Ricupero-Hovasse SL, Winston F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference