Take our Survey

Reference: Nandabalan K and Roeder GS (1995) Binding of a cell-type-specific RNA splicing factor to its target regulatory sequence. Mol Cell Biol 15(4):1953-60

Reference Help

Abstract


The transcript of the Saccharomyces cerevisiae MER2 gene is spliced efficiently during meiosis but not during vegetative growth. Efficient splicing of the wild-type MER2 transcript requires the Mer1 protein, which is produced only in meiotic cells. Analysis of deletion and substitution mutations in the MER2 5' exon demonstrates that the unusually large size of this exon plays an important role in splicing regulation. The cis-acting sequences essential for Mer1-dependent splicing of MER2 RNA were determined by the analysis of MER2 deletion mutants and hybrid genes. The 80-base MER2 intron is sufficient for Mer1-dependent splicing in vivo, but sequences in the 5' exon enhance splicing efficiency. The Mer1 protein contains the KH motif found in some RNA-binding proteins, and RNA gel mobility shift assays demonstrate that Mer1 binds specifically to MER2 RNA. Both the transcript derived from the intronless MER2 gene and the transcript consisting only of the intron are able to bind to Mer1 in vitro, but neither has as high affinity for the protein as the intact substrate. RNase T1 footprinting indicates that the Mer1 protein contacts MER2 RNA at several points in the 5' exon and in the intron. Thus, Mer1 interacts directly with a regulatory element in MER2 RNA and promotes splicing.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Nandabalan K, Roeder GS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference