Reference: Hodge MR, et al. (1989) Inverse regulation of the yeast COX5 genes by oxygen and heme. Mol Cell Biol 9(5):1958-64

Reference Help

Abstract


The COX5a and COX5b genes encode divergent forms of yeast cytochrome c oxidase subunit V. Although the polypeptide products of the two genes are functionally interchangeable, it is the Va subunit that is normally found in preparations of yeast mitochondria and cytochrome c oxidase. We show here that the predominance of subunit Va stems in part from the differential response of the two genes to the presence of molecular oxygen. Our results indicate that during aerobic growth, COX5a levels were high, while COX5b levels were low. Anaerobically, the pattern was reversed; COX5a levels dropped sevenfold, while those of COX5b were elevated sevenfold. Oxygen appeared to act at the level of transcription through heme, since the addition of heme restored an aerobic pattern of transcription to anaerobically grown cells and the effect of anaerobiosis on COX5 transcription was reproduced in strains containing a mutation in the heme-biosynthetic pathway (hem1). In conjunction with the oxygen-heme response, we determined that the product of the ROX1 gene, a trans-acting regulator of several yeast genes controlled by oxygen, is also involved in COX5 expression. These results, as well as our observation that COX5b expression varied significantly in certain yeast strains, indicate that the COX5 genes undergo a complex pattern of regulation. This regulation, especially the increase in COX5b levels anaerobically, may reflect an attempt to modulate the activity of a key respiratory enzyme in response to varying environmental conditions. The results presented here, as well as those from other laboratories, suggest that the induction or derepression of certain metabolic enzymes during anaerobiosis may be a common and important physiological response in yeast cells.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Hodge MR, Kim G, Singh K, Cumsky MG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference