Reference: Lemaire M and Collart MA (2000) The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit. J Biol Chem 275(35):26925-34

Reference Help

Abstract


The Saccharomyces cerevisiae HIS3 gene is a model system to characterize transcription initiation from different types of core promoters. The NOT genes were identified by mutations that preferentially increased transcription of the HIS3 promoter lacking a canonical TATA sequence. They encode proteins associated in a complex that also contains the Caf1 and Ccr4 proteins. It has been suggested that the Ccr4-Not complex represses transcription by inhibiting factors more specifically required for promoters lacking a TATA sequence. A potential target is the yTaf(II)19 subunit of TFIID, which, when depleted, leads to a preferential decrease of HIS3 TATA-less transcription. We isolated conditional taf19 alleles that display synthetic growth phenotypes when combined with not4 or specific not5 alleles. Inactivation of yTaf(II)19p by shifting these mutants to the restrictive temperature led to a more rapid and striking decrease in transcription from promoters that do not contain a canonical TATA sequence. We demonstrated by the two-hybrid assay and directly in vitro that yTaf(II)19p and Not5p could interact. Finally, we found by the two-hybrid assay that yTaf(II)19p also interacted with many components of the Ccr4-Not complex. Taken together, our results provide evidence that interactions between Not5p and yTaf(II)19p may be involved in transcriptional regulation by the Ccr4-Not complex.

Reference Type
Journal Article
Authors
Lemaire M, Collart MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference