Take our Survey

Reference: Gopal PK and Ballou CE (1987) Regulation of the protein glycosylation pathway in yeast: structural control of N-linked oligosaccharide elongation. Proc Natl Acad Sci U S A 84(24):8824-8

Reference Help

Abstract


The yeast Saccharomyces cerevisiae X2180 strain with the mnn1 mnn2 mnn9 mutations, all of which affect mannoprotein glycosylation, synthesizes N-linked oligosaccharides having the following structure: (Formula: see text) whereas the mnn1 mnn2 mutant extends the alpha 1----6-linked backbone of some of the core oligosaccharides by adding 20-30 mannose units. Membrane fractions from the mnn1 mnn2 and mnn1 mnn2 mnn9 mutants are equally effective in catalyzing transfer from GDP-[3H]mannose to add mannose in both alpha 1----2 and alpha 1----6 linkages to an oligosaccharide having the following structure: (Formula: see text) but neither membrane preparation can utilize the homologous mnn1 mnn2 mnn9 oligosaccharide as an acceptor. Thus, addition of the alpha 1----2-linked mannose side chain to the terminal alpha 1----6-linked mannose in oligosaccharides of the mnn9 mutant inhibits the elongation reaction and may serve as an important structural control of mannoprotein glycosylation. The mnn9 mutation also increases the transit time for invertase secretion, meaning that this mutation could affect the processing machinery in the Golgi apparatus.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Gopal PK, Ballou CE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference