Reference: Trumbly RJ (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6(1):15-21

Reference Help

Abstract


Understanding the mechanism of glucose repression in yeast has proved to be a difficult and challenging problem. A multitude of genes in different pathways are repressed by glucose at the level of transcription. The SUC2 gene, which encodes invertase, is an excellent reporter gene for glucose repression, since its expression is controlled exclusively by this pathway. Genetic analysis has identified numerous regulatory mutations which can either prevent derepression of SUC2 or render its expression insensitive to glucose repression. These mutations allow us to sketch the outlines of a pathway for general glucose repression, which has several key elements: hexokinase PII, encoded by HXK2, which seems to play a role in the sensing of glucose levels; the protein kinase encoded by SNF1, whose activity is required for derepression of many glucose-repressible genes; and the MIG1 repressor protein, which binds to the upstream regions of SUC2 and other glucose-repressible genes. Repression by MIG1 requires the activity of the CYC8 and TUP1 proteins. Glucose repression of other sets of genes seems to be controlled by the general glucose repression pathway acting in concert with other mechanisms. In the cases of the GAL genes and possibly CYC1, regulation is mediated by a cascade in which the general pathway represses expression of a positive transcriptional activator.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Trumbly RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference