Reference: Becker B, et al. (1998) A nonameric core sequence is required upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent repression by lysine. Mol Microbiol 29(1):151-63

Reference Help

Abstract


The expression of the structural genes for lysine (LYS) biosynthesis is controlled by a pathway-specific regulation mediated by the transcriptional activator Lys14 in the presence of alpha-aminoadipate semialdehyde, an intermediate of the pathway acting as a co-inducer. Owing to end product inhibition of the first step of the pathway, excess lysine reduces the production of the co-inducer and causes apparent repression of the LYS genes. Analysis of LYS promoters and insertions within an heterologous reporter gene have allowed the characterization of an upstream activating element (UASLYS) able to confer Lys14- and alpha-amino-adipate semialdehyde-dependent activation as well as apparent repression by lysine to another yeast gene. This DNA motif is present as one of several copies in the promoters of at least six LYS genes. The consensus sequence derived from the comparison of the UASLYS showing the highest activation capacities comprises the nonameric core sequence TCCRNYGGA. The RNY sequence of the 3 bp spacer as well as the presence of flanking AT-rich regions on both sides of the core sequence appear essential for optimal activation. Further evidence that this element is the target of Lys14p was provided by the demonstration that Lys14p binds to UASLYS in vitro. The binding is independent of the presence of the co-inducer and is not affected by lysine. It depends on the integrity of the putative Zn(II)2Cys6 binuclear cluster contained in the Lys14p.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Becker B, Feller A, el Alami M, Dubois E, Piérard A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference