Take our Survey

Reference: Chen W and Struhl K (1988) Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A 85(8):2691-5

Reference Help

Abstract


The yeast his3 promoter region contains two distinct classes of "TATA elements," constitutive (TC) and regulatory (TR), that are defined by their interactions with upstream promoter elements, selectivity of initiation sites, and chromatin structure. TC is localized between positions -83 and -53, and TR is localized between positions -55 and -35, regions in which there are several TATA-like sequences. In this study, we used saturation mutagenesis to examine the structural requirements of the his3 TR element necessary for transcriptional induction. To avoid the complications of redundant elements, the phenotypic analysis was carried out by using a gal-his3 hybrid promoter whose function depends on a short oligonucleotide containing the prospective his3 TR element. In this context, an oligonucleotide containing the sequence TATAAA is sufficient for TR function. However, 17 out of the 18 possible single-base substitutions and 9 out of 10 double mutations of this sequence abolish TR function. This strict sequence requirement for TR function strongly suggests that the TR element is a target site for a sequence-specific DNA-binding protein. Further, as the region encoding TC and promoters of certain other yeast genes do not contain a sequence that is compatible with TR function, we suggest that yeast cells contain multiple proteins with distinct sequence specificities that carry out a related "TATA function" and that yeast promoters can be divided into classes based on their downstream promoter elements.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Chen W, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference