Take our Survey

Reference: Lazowska J, et al. (1994) Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J 13(20):4963-72

Reference Help

Abstract


Group II introns ai1 and ai2 of the Saccharomyces cerevisiae mitochondrial COXI gene encode proteins having a dual function (maturase and reverse transcriptase) and are mobile genetic elements. By construction of adequate donor genomes, we demonstrate that each of them is self-sufficient and practises homing in the absence of homing-type endonucleases encoded by either group I introns or the ENS2 gene. Each of the S. cerevisiae group II self-mobile introns was tested for its ability to invade mitochondrial DNA (mtDNA) from two related Saccharomyces species. Surprisingly, only ai2 was observed to integrate into both genomes. The non-mobility of ai1 was clearly correlated with some polymorphic changes occurring in sequences flanking its insertion sites in the recipient mtDNAs. Importantly, studies of the behaviour of these introns in interspecific crosses demonstrate that flanking marker co-conversion accompanying group II intron homing is unidirectional and efficient only in the 3' to 5' direction towards the upstream exon. Thus, the polar co-conversion and dependence of the splicing proficiency of the intron reported previously by us are hallmarks of group II intron homing, which significantly distinguish it from the strictly DNA-based group I intron homing and strictly RNA-based group II intron transposition.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lazowska J, Meunier B, Macadre C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference