Reference: Vilela C, et al. (1998) The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res 26(5):1150-9

Reference Help

Abstract


Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Vilela C, Linz B, Rodrigues-Pousada C, McCarthy JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference