Take our Survey

Reference: Steinmetz EJ and Brow DA (1996) Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol 16(12):6993-7003

Reference Help

Abstract

We have fortuitously identified a nucleotide sequence that decreases expression of a reporter gene in the yeast Saccharomyces cerevisiae 20-fold when inserted into an intron. The primary effect of the insertion is a decrease in pre-mRNA abundance accompanied by the appearance of 3'-truncated transcripts, consistent with premature transcriptional termination and/or pre-mRNA degradation. Point mutations in the cis element relieve the negative effect, demonstrating its sequence specificity. A novel yeast protein, named Nrd1, and a previously identified putative helicase, Sen1, help mediate the negative effect of the cis element. Sen1 is an essential nuclear protein that has been implicated in a variety of nuclear functions. Nrd1 has hallmarks of a heterogeneous nuclear ribonucleoprotein, including an RNA recognition motif, a region rich in RE and RS dipeptides, and a proline- and glutamine-rich domain. An N-terminal domain of Nrd1 may facilitate direct interaction with RNA polymerase II. Disruption of the NRD1 gene is lethal, yet C-terminal truncations that delete the RNA recognition motif and abrogate the negative effect of the cis element nevertheless support cell growth. Thus, expression of a gene containing the cis element could be regulated through modulation of the activity of Nrd1. The recent identification of Nrd1-related proteins in mammalian cells suggests that this potential regulatory pathway is widespread among eukaryotes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Steinmetz EJ, Brow DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference