Take our Survey

Reference: Murakami A, et al. (1999) The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J Biol Chem 274(6):3804-10

Reference Help

Abstract

Sec12p is the guanine nucleotide exchange factor of Sar1 GTPase and functions at the very upstream in the vesicle budding reactions from the endoplasmic reticulum (ER). We previously identified three yeast loci, RST1, RST2, and RST3, whose mutations suppressed the temperature-sensitive growth of the sec12-4 mutant (Nakano, A. (1996) J. Biochem. (Tokyo) 120, 642-646). In the present study, we cloned the wild-type RST2 gene by complementation of the cold-sensitive phenotype of the rst2-1 mutant. RST2 turned out to be identical to HRR25, a gene encoding a dual-specificity casein kinase I in yeast. The rst2-1 mutation, which is now renamed hrr25-2, was due to the T176I amino acid replacement in the kinase domain. This mutation remedied not only the temperature-sensitive growth but also the defect of ER-to-Golgi protein transport of sec12. Immunoprecipitation of the hemagglutinin-tagged Hrr25-2 protein and a subsequent protein kinase assay showed that the kinase activity of the mutant protein was markedly reduced. The overproduction of another kinase-minus mutant of Hrr25p (Hrr25p K38A) slightly suppressed the growth defect of sec12-4 as well. These observations suggest that the reduction of the kinase activity in the mutant protein is important for the suppression of sec12. We propose that Hrr25p negatively regulates the vesicle budding from the ER.

Reference Type
Journal Article
Authors
Murakami A, Kimura K, Nakano A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference