Take our Survey

Reference: Richardson H, et al. (1992) Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev 6(11):2021-34

Reference Help

Abstract

We have cloned four cyclin-B homologs from Saccharomyces cerevisiae, CLB1-CLB4, using the polymerase chain reaction and low stringency hybridization approaches. These genes form two classes based on sequence relatedness: CLB1 and CLB2 show highest homology to the Schizosaccharomyces pombe cyclin-B homolog cdc13 involved in the initiation of mitosis, whereas CLB3 and CLB4 are more highly related to the S. pombe cyclin-B homolog cig1, which appears to play a role in G1 or S phase. CLB1 and CLB2 mRNA levels peak late in the cell cycle, whereas CLB3 and CLB4 are expressed earlier in the cell cycle but peak later than the G1-specific cyclin, CLN1. Analysis of null mutations suggested that the CLB genes exhibit some degree of redundancy, but clb1,2 and clb2,3 cells were inviable. Using clb1,2,3,4 cells rescued by conditional overproduction of CLB1, we showed that the CLB genes perform an essential role at the G2/M-phase transition, and also a role in S phase. CLB genes also appear to share a role in the assembly and maintenance of the mitotic spindle. Taken together, these analyses suggest that CLB1 and CLB2 are crucial for mitotic induction, whereas CLB3 and CLB4 might participate additionally in DNA replication and spindle assembly.

Reference Type
Journal Article
Authors
Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference