Take our Survey

Reference: Mitchelhill KI, et al. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269(4):2361-4

Reference Help

Abstract

The AMP-activated protein kinase is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase. It may also regulate cholesterol synthesis via phosphorylation and inactivation of hormone-sensitive lipase and hydroxymethylglutaryl-CoA reductase. We have purified the AMP-activated protein kinase 14,000-fold from porcine liver. The 63-kDa catalytic subunit co-purifies with two proteins of 40 and 38 kDa that may function as subunits. Partial amino acid sequence of the 63-kDa subunit revealed a striking homology with the catalytic domain of the yeast protein kinase transcriptional regulator Snf1 and its plant homologs. The Snf1 (72 kDa) and Snf4 (36 kDa) complex was also purified and found to phosphorylate the AMP-activated protein kinase peptide substrate, HMRSAMSGLHLVKRR-amide, but was not activated by AMP. Both Snf1/4 and the AMP-activated protein kinase phosphorylate and inactivate yeast acetyl-CoA carboxylase in vitro. These results indicate that during evolution the catalytic domain sequences of the Snf1 protein kinase subfamily have been exploited in the control of mammalian lipid metabolism and raise the possibilities that the AMP-activated protein kinase may have other substrates involved in regulating gene expression pathways, as well as Snf1 homologs participating in the control of lipid metabolism in many eukaryotic organisms.

Reference Type
Journal Article
Authors
Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference