Take our Survey

Reference: Reymond F, et al. (2000) Association of human ubiquitin-conjugating enzyme CDC34 with the mitotic spindle in anaphase. J Cell Sci 113 ( Pt 10):1687-94

Reference Help

Abstract

Present in organisms ranging from yeast to man, homologues of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme CDC34 have been shown to play important roles in the regulation of cell cycle progression and checkpoint function. Here we analyze the expression and intracellular localization of endogenous CDC34 during mammalian cell cycle progression. We find that CDC34 protein is constitutively expressed during all stages of the cell cycle. Immunofluorescence experiments reveal that during interphase, endogenous CDC34 is localized to distinct speckles in both the nucleus and the cytoplasm. The presence of CDC34 in these compartments has also been established by biochemical fractionation experiments. Interestingly, nuclear localization depends on the presence of specific carboxy-terminal CDC34 sequences that have previously been shown to be required for CDC34's cell cycle function in Saccharomyces cerevisiae. Finally, we find that in anaphase and not during early stages of mitosis, CDC34 colocalizes with (beta)-tubulin at the mitotic spindle, implying that it may contribute to spindle function at later stages of mitosis. Taken together, these results support a model in which CDC34 ubiquitin-conjugating enzyme functions in the regulation of nuclear and cytoplasmic activities as well as in the process of chromosome segregation at the onset of anaphase in mammalian cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Reymond F, Wirbelauer C, Krek W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference