Reference: Harris E, et al. (1995) Gain-of-function mutations in a human calmodulin-like protein identify residues critical for calmodulin action in yeast. Mol Gen Genet 247(2):137-47

Reference Help

Abstract


A human epithelial cell-specific transcript (NB-1) encodes a calmodulin-like protein (hCLP), which is identical in length and 85% identical in amino acid sequence to authentic human calmodulin (hCaM). Although hCaM shares only 60% amino acid sequence identity with yeast calmodulin (CMD1 gene product), hCaM was able to substitute functionally for Cmd1 in yeast cells. In contrast, hCLP was unable to support either spore germination or vegetative growth in Cmd1-deficient yeast cells, even when stably expressed at a level at least an order of magnitude above that of hCaM. Thus, hCLP provides an indicator protein for discerning those residues that are critical for calmodulin function in vivo. In addition to 20 conservative amino acid replacements, hCLP differs from hCaM (and other vertebrate calmodulins that are able to complement a cmd1 null mutation) by only three nonconservative substitutions. Site-directed mutagenesis was used to convert these three positions back to residues more typical of those found in authentic calmodulins and to prepare all possible combinations of these three mutations, specifically: three single mutants (R58V, R112N, and A128E), three double mutants (R58V A128E, R112N A128E, and R58V R112N), and the triple mutant (R58V R112N A128E). The triple mutant and one of the double mutants (R58V A128E) were able to restore an apparently normal growth rate to a cmd1 delta strain, indicating that the altered hCLPs have acquired the ability to behave as functional calmodulins in yeast. The other two double mutants were able to support growth of Cmd1-deficient cells only weakly, but cells expressing the R112N A128E mutant grew noticeably better than those expressing the R58V R112N mutant. Remarkably, one single mutant (A128E), but not the other two single mutants, was also reproducibly able to support weak growth of a cmd1 delta strain. The properties of these gain-of-function, or neomorphic, mutations implicate E128, and to a lesser extent V58, as residues critical for calmodulin action in vivo. Molecular modeling of these positions within the structure of a Ca(2+)-calmodulin.peptide complex indicates that E128 projects directly into the central cavity occupied by the bound peptide. Thus, E128 may contribute a contact that is vital for the interaction of Cmd1 with one or more of the targets that are essential for yeast cell growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Harris E, Yaswen P, Thorner J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference