Take our Survey

Reference: Bermudez Moretti M, et al. (1996) delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4. Cell Mol Biol (Noisy-le-grand) 42(4):519-23

Reference Help

Abstract

There is evidence that delta-aminolevulinic acid (ALA), a precursor of porphyrin biosynthesis, and gamma-aminobutyric acid (GABA) would be incorporated into yeast cells by a common permease. The purpose of this work was to confirm this hypothesis and to identify the shared permease. The transport of GABA in Saccharomyces cerevisiae is mediated by three permeases: the general amino acid permease (GAP1), the specific proline permease (PUT4) and a fairly specific GABA permease (UGA4). To determine which of these permeases is also involved in ALA uptake, ALA and GABA incorporations were measured in strains lacking GAP1, UGA4 or GAP1 and UGA4 permeases. Results indicated that ALA is mainly incorporated by UGA4. This was also confirmed by regulatory studies, since ALA uptake was induced by GABA, and it is well known that UGA4 permease is induced by GABA. On the other hand, ALA did not induce the synthesis of this permease. Therefore, we demonstrate here that ALA, which cannot be used as a nitrogen source, is uptaken by S. cerevisiae cells mainly using a permease encoded by a gene subjected to a regulation typical of several nitrogen genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bermudez Moretti M, Correa Garcia S, Ramos E, Batlle A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference