Take our Survey

Reference: Tarn WY, et al. (1993) The yeast PRP19 protein is not tightly associated with small nuclear RNAs, but appears to associate with the spliceosome after binding of U2 to the pre-mRNA and prior to formation of the functional spliceosome. Mol Cell Biol 13(3):1883-91

Reference Help

Abstract

We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tarn WY, Lee KR, Cheng SC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference