Take our Survey

Reference: Gilley J and Fried M (1998) Evolution of U24 and U36 snoRNAs encoded within introns of vertebrate rpL7a gene homologs: unique features of mammalian U36 variants. DNA Cell Biol 17(7):591-602

Reference Help

Abstract


U24 and U36 are members of the box C/D-containing group of antisense snoRNAs which possess long (9-21 nucleotide) conserved stretches of sequence complementarity to 18S and 28S rRNA and act as guides for the site-specific ribose methylation of rRNA. Both U24 and two variants of U36 are encoded within introns of the human and chicken rpL7a genes. We now report that an additional U36 variant is encoded within intron 4 of the human rpL7a gene and that murine homologs of the three human U36 variants are encoded within the same adjacent introns (4, 5, and 6) of the mouse rpL7a gene. We also show that, like that of the chicken, the Fugu rubripes rpL7a gene possesses only two U36-like sequences within introns 4 and 5. Whereas the two U36 variants in chicken and Fugu possess stretches of complementarity to both 18S and 28S rRNAs, it is noted that only one mammalian variant (U36b) possesses both. Unusually, the stretch of complementarity to 18S rRNA in the mammalian U36a variants and the stretch of complementarity to 28S rRNA in the mammalian U36c variants are not present, appearing to have diverged extensively from their consensus sequence. Additionally, the mammalian U36 variants show a unique heterogeneity in their potential to form a terminal stembox structure predicted for many other box C/D-containing antisense snoRNAs. Finally, the Saccharomyces cerevisiae small nuclear RNA, snR47, is shown to be homologous to the vertebrate U36 snoRNA.

Reference Type
Journal Article
Authors
Gilley J, Fried M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference