Take our Survey

Reference: Pelissier PP, et al. (1992) Regulation by nuclear genes of the mitochondrial synthesis of subunits 6 and 8 of the ATP synthase of Saccharomyces cerevisiae. J Biol Chem 267(4):2467-73

Reference Help

Abstract

The nuclear mutant AB1-4A/8/100, a respiratory-competent strain altered in the regulation of ATP synthesis, has been shown to be modified in the relative stoichiometry of the mtDNA-encoded proteolipids of the F0 sector of ATP synthase: the ratios mutant/wild type of the proteolipids were equal to 0.4/0.7/1 for Su8/Su6/Su9, respectively. This defect results from the simultaneous presence of two nuclear genes which promote a cryosensitive phenotype on a nonfermentable carbon source. Measurements of mitochondrial protein synthesis carried out "in vivo" and "in organello" evidenced a specific defect in the synthesis of subunits 6 and 8. Measurements of the steady state levels of mitochondrial mRNA showed that the defect in subunits 6 and 8 was correlated with a modification of the expression of a cotranscript ATP8-ATP6. This cotranscript is matured at a unique site to give two cotranscripts of 4600 and 5200 bases in length. In mutant mitochondria, the ratio between both cotranscripts, 5200/4600, was lowered. In parallel, expression of the whole mitochondrial transcription unit supporting the genes COXI, ATP8, ATP6, and RF3 was enhanced. However, despite this over expression, the amount of the long cotranscript ATP8-ATP6 remained lower than in wild type mitochondria.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pelissier PP, Camougrand NM, Manon ST, Velours GM, Guerin MG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference