Take our Survey

Reference: Dumortier F, et al. (2000) A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K176M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. Int J Food Microbiol 55(1-3):103-7

Reference Help

Abstract

The cAMP-protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae plays a major role in the control of metabolism, proliferation and stress resistance. Derepressed cells show a rapid increase in the cAMP level (within 1 min) after addition of glucose or after intracellular acidification. A specific mutation in adenylate cyclase, the enzyme that catalyzes the synthesis in cAMP, largely prevents both cAMP responses. The responsible mutation was originally called lcr1 (for lack of cAMP responses); lcr1 was later identified as allelic with CYR1/CDC35. The mutation was introduced into the CYR1 gene of a W303-1A wild type strain, which resulted in a large decrease in cAMP signalling. Furthermore, there was a strong reduction in GTP/Mg2+-stimulated but not in Mn2+-stimulated adenylate cyclase activity in isolated plasma membranes, which is consistent with the absence of signalling through adenylate cyclase in vivo. Glucose-induced activation of trehalase was reduced and mobilization of trehalose and glycogen and loss of stress resistance were delayed in the lcr1 mutant. Because of the absence of cAMP signalling during exponential growth on glucose, it was concluded that glucose-induced cAMP signalling is restricted to the transition from gluconeogenic/respiratory to fermentative growth. Activation of the PKA pathway is mediated by a G protein (either Ras1/Ras2 or Gpa2). Constitutive activation of the pathway by Ras2val19 or Gpa2val132 has a negative effect on glycogen and trehalose accumulation and heat shock survival. The lcr1 mutation partially suppresses this effect indicating that the target sites of the two G-proteins on adenylate cyclase might have at least a part in common.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Dumortier F, Vanhalewyn M, Debast G, Colombo S, Ma P, Winderickx J, Van Dijck P, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference