Take our Survey

Reference: Feng L, et al. (2000) Identification and characterization of Saccharomyces cerevisiae Cdc6 DNA-binding properties. Mol Biol Cell 11(5):1673-85

Reference Help

Abstract

Recent studies have shown that Cdc6 is an essential regulator in the formation of DNA replication complexes. However, the biochemical nature of the Cdc6 molecule is still largely unknown. In this report, we present evidence that the Saccharomyces cerevisiae Cdc6 protein is a double-stranded DNA-binding protein. First, we have demonstrated that the purified yeast Cdc6 can bind to double-stranded DNA (dissociation constant approximately 1 x 10(-7) M), not to single-stranded DNA, and that the Cdc6 molecule is a homodimer in its native form. Second, we show that GST-Cdc6 fusion proteins expressed in Escherichia coli bind DNA in an electrophoretic mobility shift assay. Cdc6 antibodies and GST antibodies, but not preimmune serum, induce supershifts of GST-Cdc6 and DNA complexes in these assays, which also showed that GST-Cdc6 binds to various DNA probes without apparent sequence specificity. Third, the minimal requirement for the binding of Cdc6 to DNA has been mapped within its N-terminal 47-amino acid sequence (the NP6 region). This minimal binding domain shows identical DNA-binding properties to those possessed by full-length Cdc6. Fourth, the GST-NP6 protein competes for DNA binding with distamycin A, an antibiotic that chelates DNA within the minor groove of the A+T-rich region. Finally, site-direct mutagenesis studies revealed that the (29)KRKK region of Cdc6 is essential for Cdc6 DNA-binding activity. To further elucidate the function of Cdc6 DNA binding in vivo, we demonstrated that a binding mutant of Cdc6 fails to complement either cdc6-1 temperature-sensitive mutant cells or Deltacdc6 null mutant cells at the nonpermissive temperature. The mutant gene also conferred growth impairments and increased the plasmid loss in its host, indicative of defects in DNA synthesis. Because the mutant defective in DNA binding also fails to stimulate Abf1 ARS1 DNA-binding activity, our results suggest that Cdc6 DNA-binding activity may play a pivotal role in the initiation of DNA replication.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Feng L, Wang B, Driscoll B, Jong A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference