Reference: Raboy B, et al. (1999) Heat-induced cell cycle arrest of Saccharomyces cerevisiae: involvement of the RAD6/UBC2 and WSC2 genes in its reversal. Mol Microbiol 32(4):729-39

Reference Help

Abstract


The Saccharomyces cerevisiae RAD6 (UBC2 ) gene encodes a ubiquitin-conjugating enzyme that is involved in a wide range of cellular processes including DNA repair, sporulation and N-end rule protein degradation. Under mild heat stress conditions (37-38 degrees C) rad6 null and rad6-149 mutant cells are unable to grow. The molecular basis for this failure to grow is unknown. Here we show that the heat sensitivity of rad6 mutants is not due to cell death but to an inability to progress in the cell cycle. The temperature-induced cell cycle arrest of these mutants is due to a block in a branch of the RAD6 pathway distinct from the DNA repair and the N-end rule protein degradation pathways. Wild-type cells heated to 38 degrees C arrest transiently in the late G1 phase and then resume growth. At 38 degrees C rad6 mutant cells arrest in late G1 but, unlike wild-type cells, are unable to resume cell cycle progression. In both wild-type and in rad6 mutant cells, CLN1 and CLN2 transcript levels fall sharply upon temperature increase. In wild-type cells levels of these transcripts recover rapidly, whereas in the rad6 mutant they recover slowly. As rad6 cells remain arrested even after CLN1 and CLN2 mRNAs regain their preheat stress levels, factors additional to reduced G1 cyclin gene expression must cause the temperature-induced cell cycle block of the mutant. To identify genes involved in the relief of the cell cycle arrest under heat stress, we screened a multicopy yeast genomic library for clones that restore the growth of the rad6-149 mutant. A plasmid was isolated carrying the WSC2 gene, which is closely related to WSC1/SLG1/HCS77, a putative membrane heat sensor. Overexpression of WSC2 reverses the heat-induced cell cycle arrest of rad6-149 but not of rad6 null mutants. Taken together the findings point to the existence of an unidentified heat stress-activated cell cycle checkpoint pathway, which is antagonized by Rad6p by a mechanism also involving Wsc2p.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Raboy B, Marom A, Dor Y, Kulka RG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference