Take our Survey

Reference: Paravicini G and Friedli L (1996) Protein-protein interactions in the yeast PKC1 pathway: Pkc1p interacts with a component of the MAP kinase cascade. Mol Gen Genet 251(6):682-91

Reference Help

Abstract


The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with the Saccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in the PKC1-mediated signalling pathway. Subsequently, Pkc1p and the other PKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of the PKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.

Reference Type
Journal Article
Authors
Paravicini G, Friedli L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference