Take our Survey

Reference: Jin Y, et al. (1997) Ho endonuclease cleaves MAT DNA in vitro by an inefficient stoichiometric reaction mechanism. J Biol Chem 272(11):7352-9

Reference Help

Abstract


Mating type switching in Saccharomyces cerevisiae initiates when Ho endonuclease makes a double-stranded DNA break at the yeast MAT locus. In this report, we characterize the fundamental biochemical properties of Ho. Using an assay that monitors cleavage of a MAT plasmid, we define an optimal in vitro reaction, showing in particular that the enzyme has a stringent requirement for zinc ions. This suggests that zinc finger motifs present in Ho are important for cleavage. The most unexpected feature of Ho, however, is its extreme inefficiency. Maximal cleavage occurs when Ho is present at a concentration of 1 molecule/3 base pairs of substrate DNA. Even under these conditions, complete digestion requires >2 h. This inefficiency results from two characteristics of Ho. First, Ho recycles slowly from cleaved product to new substrate, in part because the enzyme has an affinity for one end of its double strand break product. Second, high levels of cleavage in the in vitro reaction correlate with the appearance of large protein-DNA aggregates. At optimal Ho concentrations, these latter aggregates, referred to as "florettes," have an ordered structure consisting of a densely staining central region and loops of radiating DNA. These unusual properties may indicate that Ho plays a role in other aspects of mating type switching subsequent to double strand break formation.

Reference Type
Journal Article
Authors
Jin Y, Binkowski G, Simon LD, Norris D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference