Reference: Navas TA, et al. (1996) RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10(20):2632-43

Reference Help

Abstract


In response to DNA damage and replication blocks, yeast cells arrest at distinct points in the cell cycle and induce the transcription of genes whose products facilitate DNA repair. Examination of the inducibility of RNR3 in response to UV damage has revealed that the various checkpoint genes can be arranged in a pathway consistent with their requirement to arrest cells at different stages of the cell cycle. While RAD9, RAD24, and MEC3 are required to activate the DNA damage checkpoint when cells are in G1 or G2, POL2 is required to sense UV damage and replication blocks when cells are in S phase. The phosphorylation of the essential central transducer, Rad53p, is dependent on POL2 and RAD9 in response to UV damage, indicating that RAD53 functions downstream of both these genes. Mutants defective for both pathways are severely deficient in Rad53p phosphorylation and RNR3 induction and are significantly more sensitive to DNA damage and replication blocks than single mutants alone. These results show that POL2 and RAD9 function in parallel branches for sensing and transducing the UV DNA damage signal. Each of these pathways subsequently activates the central transducers Mec1p/Esr1p/Sad3p and Rad53p/Mec2p/Sad1p, which are required for both cell-cycle arrest and transcriptional responses.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Navas TA, Sanchez Y, Elledge SJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference