Take our Survey

Reference: Herreros E, et al. (1992) A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation. Mol Microbiol 6(23):3567-74

Reference Help

Abstract


In order to develop plasmids adequate for non-integrative genetic transformation of Candida albicans, a DNA fragment of 15.3 kb was cloned from this organism on the basis of its capacity to convert the integrative Saccharomyces cerevisiae vector YIp5 into a non-integrative one. Southern hybridization analysis, carried out with a labelled DNA probe of 3.6 kb derived from the cloned fragment, showed that it consisted of C. albicans DNA, the hybridization pattern indicating that the corresponding sequences were homologous to several chromosomal regions. The size of the C. albicans DNA promoting autonomous replication in S. cerevisiae was substantially reduced by subcloning. A 5.1 kb subfragment, defined by BamHI and SalI restriction sites, retained autonomous replication sequences (ARS) functional in the heterologous S. cerevisiae system and in C. albicans, when inserted in plasmid constructions that carried a S. cerevisiae trichodermin-resistance gene (tcm1) as selection marker. C. albicans transformants were both of the integrative and the non-integrative type and the plasmids recovered from the latter very often carried a reorganized ARS, indicating that recombination of the inserted ARS DNA had occurred in the homologous host. Successive reorganizations of the ARS insert in C. albicans eventually led to a more stable and much smaller fragment of 687 bp that was subsequently recovered unchanged from transformants. Sequence analysis of the 687 bp fragment revealed four 11-base blocks, rich in A+T, that carried the essential consensus sequence considered relevant for yeast ARS elements in addition to other features also described as characteristic of yeast replication origins.

Reference Type
Journal Article
Authors
Herreros E, Garcia-Saez MI, Nombela C, Sanchez M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference