Reference: Mizuta K and Warner JR (1994) Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol Cell Biol 14(4):2493-502

Reference Help

Abstract


To explore the regulatory elements that maintain the balanced synthesis of the components of the ribosome, we isolated a temperature-sensitive (ts) mutant of Saccharomyces cerevisiae in which transcription both of rRNA and of ribosomal protein genes is defective at the nonpermissive temperature. Temperature sensitivity for growth is recessive and segregates 2:2. A gene that complements the ts phenotype was cloned from a genomic DNA library. Sequence analysis revealed that this gene is SLY1, encoding a protein essential for protein and vesicle transport between the endoplasmic reticulum and the Golgi apparatus. In the strain carrying our ts allele of SLY1, accumulation of the carboxypeptidase Y precursor was detected at the nonpermissive temperature, indicating that the secretory pathway is defective. To ask whether the effect of the ts allele on ribosome synthesis was specific for sly1 or was a general result of the inactivation of the secretion pathway, we assayed the levels of mRNA for several ribosomal proteins in cells carrying ts alleles of sec1, sec7, sec11, sec14, sec18, sec53, or sec63, representing all stages of secretion. In each case, the mRNA levels were severely depressed, suggesting that this is a common feature in mutants of protein secretion. For the mutants tested, transcription of rRNA was also substantially reduced. Furthermore, treatment of a sensitive strain with brefeldin A at a concentration sufficient to block the secretion pathway also led to a decrease of the level of ribosomal protein mRNA, with kinetics suggesting that the effect of a secretion defect is manifest within 15 to 30 min. We conclude that the continued function of the entire secretion pathway is essential for the maintenance of ribosome synthesis. The apparent coupling of membrane synthesis and ribosome synthesis suggest the existence of a regulatory network that connects the production of the various structural elements of the cell.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Mizuta K, Warner JR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference