Reference: Lin JJ and Zakian VA (1996) The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93(24):13760-5

Reference Help

Abstract


Saccharomyces telomeres consist of approximately 300 bp of C1-3A/TG1-3 DNA. Cells lacking the activity of the essential gene CDC13 display a cell cycle arrest mediated by the DNA damage sensing, RAD9 cell cycle checkpoint, presumably because they exhibit strand-specific loss of telomeric and telomere-adjacent DNA [Garvik, B., Carson, M. & Hartwell, L. (1995) Mol. Celi. Biol. 15,6128-6138]. Cdc13p expressed in Escherichia coli or overexpressed in yeast bound specifically to single-strand TG1-3 DNA. The specificity of binding displayed by Cdc13p in vitro indicates that in vivo it could bind to both the short, constitutive single-strand TG1-3 tails thought to be present at telomeres at most times in the cell cycle as well as to the long single-strand TG1-3 tails that are intermediates in telomere replication. Genes located near yeast telomeres are transcriptionally repressed, a phenomenon known as telomere position effect. Cells overexpressing a mutant form of Cdc13p had reduced telomere position effect at high temperatures. These data suggest that Cdc13p functions by binding directly to telomeric DNA, thereby limiting its accessibility to degradation and transcription as well as masking it from factors that detect damaged DNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Lin JJ, Zakian VA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference