Reference: Chiu MI, et al. (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics 132(4):987-1001

Reference Help

Abstract


Genetic and biochemical evidence shows that a single nuclear gene HTS1 encodes both the mitochondrial and cytoplasmic histidyl-tRNA synthetases (Hts). The gene specifies two messages, one with two in-frame ATGs (-60 and +1) and another with only the downstream ATG (+1). We have made a new set of mutations that enables us to express only the mitochondrial or the cytoplasmic form and compared the subcellular distribution of the Hts1 protein in these mutants and wild type, using an antibody that interacts with both the mitochondrial and cytoplasmic Hts1 as well as Hts1::LacZ fusions. Mutations in the upstream ATG (-60) or frameshift mutations in the presequence affect only the mitochondrial enzyme and not the cytoplasmic enzyme. Mutations in the downstream ATG (+1 ATG to ATC) destroy the function of the cytosolic enzyme, but do not affect the function of the mitochondrial enzyme. Overexpression of this construct restores cytoplasmic function. Cells expressing a truncated form of Hts containing a deletion of the first 20 amino-terminal residues (Htsc) produce a functional cytoplasmic enzyme, which does not provide mitochondrial function. Overexpression of this truncated cytoplasmic protein provides mitochondrial function and produces detectable levels of the synthetase in the mitochondrion. These experiments suggest that Hts1 contains two domains that together allow efficient localization of Htsm to the mitochondrion: an amino-terminal presequence in the mitochondrial precursor that is likely cleaved upon delivery to the mitochondrion and a second amino-terminal sequence (residues 21-53) present in both the precursor and the cytoplasmic form. Neither one by itself is sufficient to act as an efficient mitochondrial targeting signal. Using our antibody we have been able to detect a protein of increased molecular mass that corresponds to that of the predicted precursor. Taken together these studies show that the specificity of compartmentation of the Hts protein depends upon both the primary sequence and the concentration of the protein in the cell.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Chiu MI, Mason TL, Fink GR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference