Reference: Mitchell P, et al. (1996) The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev 10(4):502-13

Reference Help

Abstract


Eukaryotic rRNAs (with the exception of 5S rRNA) are synthesized from a contiguous pre-rRNA precursor by a complex series of processing reactions. Final maturation of yeast 5.8S rRNA involves processing of a 3'-extended, 7S precursor that contains approximately 140 nucleotides of the internal transcribed spacer 2 (ITS2) region. In yeast strains carrying the temperature-sensitive (ts) rrp4-1 mutation, 5.8S rRNA species were observed with 3' extensions of variable length extending up to the 3' end of the 7S pre-rRNA. These 3'-extended 5.8S rRNA species were observed at low levels in rrp4-1 strains under conditions permissive for growth and increased in abundance upon transfer to the nonpermissive temperature. The RRP4 gene was cloned by complementation of the ts growth phenotype of rrp4-1 strains. RRP4 encodes an essential protein of 39-kD predicted molecular mass. Immunoprecipitated Rrp4p exhibited a 3'-->5' exoribonuclease activity in vitro that required RNA with a 3'-terminal hydroxyl group and released nucleoside 5' monophosphates. We conclude that the 7S pre-rRNA is processed to 5.8S rRNA by a 3'-->5' exonuclease activity involving Rrp4p. Homologs of Rrp4p are found in both humans and fission yeast Schizosaccharomyces pombe (43% and 52% identity, respectively), suggesting that the mechanism of 5.8S rRNA 3' end formation has been conserved throughout eukaryotes.

Reference Type
Journal Article
Authors
Mitchell P, Petfalski E, Tollervey D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference