Take our Survey

Reference: Lammer D, et al. (1998) Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev 12(7):914-26

Reference Help

Abstract

The RUB1/NEDD-8 family of ubiquitin-related genes is widely represented among eukaryotes. Here we report that Cdc53p in Saccharomyces cerevisiae, a member of the Cullin family of proteins, is stably modified by the covalent attachment of a single Rub1p molecule. Two genes have been identified that are required for Rub1p conjugation to Cdc53p. The first gene, designated ENR2, encodes a protein with sequence similarity to the amino-terminal half of the ubiquitin-activating enzyme. By analogy with Aos1p, we infer that Enr2p functions in a bipartite Rub1p-activating enzyme. The second gene is SKP1, shown previously to be required for some ubiquitin-conjugation events. A deletion allele of ENR2 is lethal with temperature-sensitive alleles of cdc34 and enhances the phenotypes of cdc4, cdc53, and skp1, strongly implying that Rub1p conjugation to Cdc53p is required for optimal assembly or function of the E3 complex SCFCdc4. Consistent with this model, both enr2delta and an allele of Cdc53p that is not Rub1p modified, render cells sensitive to alterations in the levels of Cdc4p, Cdc34p, and Cdc53p.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Lammer D, Mathias N, Laplaza JM, Jiang W, Liu Y, Callis J, Goebl M, Estelle M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference