Reference: Cos T, et al. (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256(2):419-26

Reference Help

Abstract


Chitin is a minor but essential component of the cell wall of Saccharomyces cerevisiae, with functions in septum formation in the vegetative life cycle and also in conjugation and spore cell-wall synthesis in the sexual cycle. Of the three chitin synthases present in yeast, chitin synthase III (CSIII) is responsible for the synthesis of most of the chitin found in the cell, including a chitin ring at early budding, chitin interspersed in the cell wall, and chitin laid down during the sexual cycle. We have tagged Chs3p, the putative catalytic subunit of CSIII, with the immunoreactive epitope of influenza virus hemagglutinin to follow expression of the protein. Little correlation was found between the levels of transcription and translation of Chs3p and in vivo function, supporting our previous conclusion that regulation of CSIII occurs at the posttranslational level. To identify possible regions of the protein involved in catalysis or regulation, mutations were generated in the QRRRW 'signature sequence' of chitin synthases. Arginine residue mutations in Chs3p, and in Chs1p and Chs2p, resulted in a loss of both function in vivo and enzymatic activity. Mutations in a serine residue adjacent to glutamine in Chs3p caused loss of function in vivo with a moderate decrease in CSIII activity, suggesting a regulatory role for the serine residue in chitin biosynthesis. Several truncations in the unique hydrophilic carboxy-terminal region of Chs3p identified a sequence of about 25 amino acids that is required for both function and in vitro activity. Since this region is not present in Chs1 or Chs2, it may be involved in the specific regulation of CSIII.

Reference Type
Journal Article
Authors
Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference