Take our Survey

Reference: Schmelzer C, et al. (1983) Determination of functional domains in intron bI1 of yeast mitochondrial RNA by studies of mitochondrial mutations and a nuclear suppressor. EMBO J 2(11):2047-52

Reference Help

Abstract

The sequence of intron 1 in the cob gene in mtDNA (bI1) of the yeast strain 777-3A has been determined. Furthermore, we have performed a systematic search for complementary sequence stretches within this intron RNA, and within the RNA of intron 5 gamma of the oxi3 gene (aI5 gamma) which shares distinctive sequences with bI1. Possible secondary structure models derived from this analysis show nearly identical core structures for bI1 and aI5 gamma RNA with conserved sequence stretches in prominent positions. These core structures are similar to those previously reported for RNAs of introns having very limited sequence homology with bI1 and aI5 gamma. In two mutants which are defective in bI1 excision from cob pre-mRNA, nucleotide sequence alterations in bI1 have been determined. One mutation (G5049) apparently affects the stability of a hybrid stretch in the proposed secondary structure of bI1 RNA whereas the other one (M1301), a deletion of one A in a run of five As, affects a sequence which is conserved in bI1 and aI5 gamma and is involved in the formation of a distinct secondary structure. Out of seven revertants of M1301, three were found to have restored the wild-type bI1 sequence AAAAA, three others had the related sequence AAAAG which is functionally indistinguishable from wild-type, whereas one revertant had a nuclear mutation which suppresses the splicing defect exerted by the mitochondrial mutation M1301. This nuclear suppressor (SUP-101) is allele specific and dominant. The possible role of the sequence affected by M1301 in terms of a recognition site for a nuclear gene product will be discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Schmelzer C, Schmidt C, May K, Schweyen RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference