Reference: Synetos D, et al. (1996) Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochim Biophys Acta 1309(1-2):156-66

Reference Help

Abstract


Ribosomal proteins S12, S5 and S4 of Escherichia coli are essential for the control of translational accuracy. Their yeast equivalents, i.e., S28, S4 and S13, have also been implicated in this process. Using a poly(U)-dependent cell-free translation system, we determined the accuracy of translation and the sensitivity to antibiotic paromomycin of yeast ribosomes carrying mutant ribosomal proteins S28 and/or S4. Our results confirm by quantitative biochemical methods previous genetic data showing that proteins S28 and S4 are involved in the decoding activity of the ribosome and interact to control translational accuracy. We find that the suppressor mutation SUP44 in yeast S4, decreased the accuracy of translation. To examine the effect of mutant S28, we disrupted RPS28B and introduced in RPS28A the same substitutions that cause hyperaccurate translation or antibiotic resistance in bacteria. Three of these substitutions (Lys-62-->Asn, Thr or Gln) similarly increased translational accuracy in vitro or antibiotic resistance. In the presence of the SUP44 mutation, these substitutions partially reversed the decrease of translational accuracy caused by SUP44. However, the Lys-62-->Arg substitution decreased translational accuracy and caused antibiotic sensitivity both in nonsuppressor and in SUP44 haploids. These results establish the role of Lys-62 of S28 in optimizing translational accuracy and provide a more precise view of the functional role of two important ribosomal proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Synetos D, Frantziou CP, Alksne LE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference