Take our Survey

Reference: Frevert J and Ballou CE (1982) Yeast invertase polymorphism is correlated with variable states of oligosaccharide chain phosphorylation. Proc Natl Acad Sci U S A 79(20):6147-50

Reference Help

Abstract


Saccharomyces cerevisiae invertase (EC 3.2.1.26) isolated from wild-type strain X2180 can be resolved by isoelectric focusing into at least seven bands revealed by an activity stain. Most of this polymorphism is eliminated in mutants that are defective in phosphorylation of the mannoprotein carbohydrate chains (mnn4 and mnn6). In contrast to strain X2180, invertase from the mnn9 mutant, which makes mannoprotein lacking the outer portion of the polymannose chains, shows only two major bands on isoelectric focusing. Although mnn2 mannoprotein is though not to have any branches in its outer chain, the invertase of this mutant shows at least six bands on isoelectric focusing, and digestion of this invertase with an endo-alph aI leads to 6-mannanase that removes the unbranched outer chain produces an invertase with two bands that are similar to those from the mnn9 mutant. The invertase from mnn2 cells, grown with [32P]orthophosphate and precipitated with specific antiserum, gives at least five radioactive bands on isoelectric focusing, and after digestion with the endomannanase the radioactivity no longer migrates with the residual invertase. Mutants with shortened and unbranched outer chains (mnn2 mnn7, mnn2 mnn8, and mnn2 mnn10) give invertase patterns similar to mnn2. The results suggest that multiple states of outer chain phosphorylation lead to isoelectric polymorphism of S. cerevisiae external invertase and, because invertase has nine carbohydrate chains, no more than one phosphate group per chain would be required to account for this property.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Frevert J, Ballou CE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference