Reference: Piotrowski M, et al. (1998) Complementation of the Saccharomyces cerevisiae plasma membrane H+-ATPase by a plant H+-ATPase generates a highly abundant fusicoccin binding site. J Biol Chem 273(45):30018-23

Reference Help

Abstract

Accumulating evidence suggests that the H+-ATPase of the plant plasma membrane is activated by a direct, reversible interaction with 14-3-3 proteins involving the displacement of the C-terminal autoinhibitory domain of the enzyme. The fungal phytotoxin fusicoccin (FC) appears to stabilize this H+-ATPase.14-3-3 complex, thus leading to a persistent activation of the H+-ATPase in vivo. In this study we show that functional replacement of the Saccharomyces cerevisiae H+-ATPase genes by a Nicotiana plumbaginifolia H+-ATPase (pma2) results in the generation of a high affinity fusicoccin binding site that is exceptionally abundant. Acquisition of FC binding capacity is accompanied by a significant increase in the amount of plasma membrane-associated yeast 14-3-3 homologs. The existence of a (plant) PMA2.(yeast)14-3-3 complex was demonstrated using two-dimensional gel systems (native/denaturing). After expression of PMA2 lacking most of its C-terminal region, neither H+-ATPase.14-3-3 complex formation nor FC binding activity could be observed. Furthermore, we obtained direct biochemical evidence for a minimal FC binding complex consisting of the C-terminal PMA2 domain and yeast 14-3-3 homologs. Thus we demonstrated unambiguously the relevance of this regulatory ATPase domain for 14-3-3 interaction as well as its requirement for FC binding.

Reference Type
Journal Article
Authors
Piotrowski M, Morsomme P, Boutry M, Oecking C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference