Reference: Wells TN, et al. (1993) Phosphomannose isomerase from Saccharomyces cerevisiae contains two inhibitory metal ion binding sites. Biochemistry 32(5):1294-301

Reference Help

Abstract


Phosphomannose isomerase (PMI) from Saccharomyces cerevisiae is a zinc-dependent metalloenzyme. Besides its role in catalysis, zinc is also a potent inhibitor of the enzyme. The inhibition is competitive with the substrate mannose 6-phosphate, with Kis = 6.4 microM in 50 mM Tris-HCl buffer, pH 8.0, at 37 degrees C. This inhibition constant is 4 orders of magnitude smaller than for group II divalent cations, indicating that the binding is not primarily electrostatic. Micromolar inhibition is also observed with ions of the other metals of the electronic configuration d10. Under identical conditions, cadmium is a predominantly competitive inhibitor with Kis = 19.5 microM. Inhibition by mercury is predominantly competitive with Kis = 6.0 microM but shows a hyperbolic Dixon plot. Theorell-Yonetani double-inhibition analysis shows that zinc and cadmium ions are mutually exclusive inhibitors against mannose 6-phosphate. However, analysis of zinc and mercury double inhibition shows that they can simultaneously bind in the mannose 6-phosphate binding pocket, with only a small mutual repulsion. Inhibition of the enzyme by cadmium and zinc ions is strongly pH dependent with pKa = 9.2 for cadmium and one pKa at 6.6 and two at 8.9 for zinc. The inhibitory species are the monohydroxide forms, Zn(OH)+ and Cd(OH)+. However, inhibition by mercury is relatively pH-independent, consistent with the neutral Hg(OH)2 being the inhibitory species. In all three cases, the metal ion binding causes a conformational change in the enzyme as judged by tryptophan fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article
Authors
Wells TN, Coulin F, Payton MA, Proudfoot AE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference