Take our Survey

Reference: Sweetser DB, et al. (1994) Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol 14(6):3863-75

Reference Help

Abstract


Spontaneous and double-strand break (DSB)-induced gene conversion was examined in alleles of the Saccharomyces cerevisiae ura3 gene containing nine phenotypically silent markers and an HO nuclease recognition site. Conversions of these alleles, carried on ARS1/CEN4 plasmids, involved interactions with heteroalleles on chromosome V and were stimulated by DSBs created at HO sites. Crossovers that integrate plasmids into chromosomes were not detected since the resultant dicentric chromosomes would be lethal. Converted alleles in shuttle plasmids were easily transferred to Escherichia coli and analyzed for marker conversion, facilitating the characterization of more than 400 independent products from five crosses. This analysis revealed several new features of gene conversions. The average length of DSB-induced conversion tracts was 200 to 300 bp, although about 20% were very short (less than 53 bp). About 20% of spontaneous tracts also were also less than 53 bp, but spontaneous tracts were on average about 40% longer than DSB-induced tracts. Most tracts were continuous, but 3% had discontinuous conversion patterns, indicating that extensive heteroduplex DNA is formed during at least this fraction of events. Mismatches in heteroduplex DNA were repaired in both directions, and repair tracts as short as 44 bp were observed. Surprisingly, most DSB-induced gene conversion tracts were unidirectional and exhibited a reversible polarity that depended on the locations of DSBs and frameshift mutations in recipient and donor alleles.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Sweetser DB, Hough H, Whelden JF, Arbuckle M, Nickoloff JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference